Combinatorial approaches to drug discovery

The concept of rational drug design drew emphasis away from the traditional random screening approach to drug discovery. However, the evelopment of techniques capable of generating large numbers of novel synthetic chemicals (combinatorial libraries), coupled  with high-throughput screening methods, has generated fresh interest in the random screening approach.

Libraries can be generated relatively inexpensively and in a short time period. While many larger  pharmaceutical  companies  maintain libraries of several hundred thousand natural and synthetic compounds, combinatorial chemistry can generate millions  of  compounds with relative ease. Peptides, for example, play various regulatory roles in the body, and several enjoy therapeutic application. Synthetic peptide   libraries, containing   peptides   displaying   millions   of   amino   acid   sequence   combinations, can  now   be    generated   by combinatorial  chemistry  with  minimal  requirement  for  expensive  equipment. Two  approaches  can  be  followed  to  generate  a combinatorial peptide library: ‘split synthesis’ and ‘T-bag synthesis’.

The split level approach, for example, results in the creation of  a  large  peptide  library  in  which  the  peptides  are  grown  on  small synthetic beads. Peptides grown on any single bead will  all  be  of  identical  amino  acid  sequences. Individual  amino  acids  can  be coupled to the growing chain by straightforward solid phase peptide synthesis techniques. In the split-level approach, a pool  of  beads are equally distributed into separate reaction vessels, each containing a single amino acid in  solution. After  chemical  coupling  to  the beads, the beads are recovered, pooled and randomly distributed into the reaction vessels once more. This cycle can be repeated several times to extend the peptide chain.

The combinatorial approach is characterized not only by rapid synthesis of vast peptide libraries but also  by  rapid  screening  of  these libraries (i.e. screening of the library to locate any peptides  capable  of  binding  to  a  ligand  of  interest — perhaps  an  enzyme  or  a hormone receptor). The soluble ligand is first labelled with an easily  visible  tag, often  a  fluorescent  tag. This  is  then  added  to  the beads. Binding of the ligand to a particular peptide will effectively result in staining of the bead to which the peptide  is  attached. This bead can then be physically separated from the other  beads, e.g.  using  a  microforceps. The  isolated  bead  is  then  washed  in  8  M guanidine hydrochloride (to remove  the  screening  ligand)  and  the  sequence  of  the  attached  peptide  is  then  elucidated  using  a microsequencer.  Typically,  a   bead   will   have  50–200  pmol  of  peptide  attached, while  the  lower  limit  of  sensitivity  of  most microsequencers is of the order of 5 pmol. Once its amino acid sequence is  elucidated, it  can  be  synthesized  in  large  quantities  for further study.

A library containing several million beads can be screened in  a single  afternoon. Furthermore, the  library  is  reusable, as  it  may  be washed in 8 M guanidine hydrochloride and then re-screened using a different probe. This split synthesis approach displays the ability to generate peptide libraries of incredible variety, variety tha t can  be  further  expanded  by  incorporation  of, for  example, D -amino acids or rarely occurring amino acids.

Overall, therefore, various approaches  may  be  adopted  in  the quest  to  discover  new  drugs. The  approach  generally  adopted  in biopharmacentical discovery differs from  most  other  approaches  in  that  biopharmaceuticals  are  produced  naturally  in  the  body. Discovery of a biopharmaceutical product, therefore, becomes a function of an increased knowledge of how the body itself  functions. After its initial discovery, the physicochemical and biological characteristics of the potential drug can then be studied.


Сообщить о нарушении Подробнее